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The interplay of radicality and resonance structures in conjugated π bonds is explored by
graph theory. Radicality dominates substitution effect in polyenes. As a first step, non-radical
and radical acyclic polyenes are sorted and enumerated through generating monosubstituted
derivatives. The generating function is determined by the growth pattern of trees embedded
in hexagonal lattice. Each substitution site of a polyene is characterized as either singly or
doubly bonded. Doubly bonded sites are favored energetically. Growth pattern leads to the
derivation of recurrence relations. The generating function consists of two parts intertwined,
resulting in two coupled equations. Geometric and constitutional isomerisms of polyenes are
treated. For the former, equations are solved either analytically or by iteration. For the latter,
only numerical solution is obtained.
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1. Introduction

Free radicals are reactive molecules. Resonance is often alluded as a mechanism
for a molecule to achieve stability. These two seemingly opposite properties appear
simultaneously in polyenes. In this article, graph theory shows a natural connection
between radicality and resonance, both leading to the generation and sorting of polyene
structures.

In 1857, Cayley [1] pioneered the study of tree structure as a new analytical form.
In 1874, he treated acyclic chemical structures [2] as a subset of trees and started a new
interdisciplinary subject between mathematics and chemistry: chemical graph theory.
Ever since then, it has left us pondering how far this merging would push. Counter to
the assertions of the local nature of any physical subject, quantum mechanics has dis-
credited many hypotheses and theories that are based on locality. However, chemical
graph theory [3,4] survives and thrives in the quantum era. Graph theory and chem-
istry prove to be mutually beneficial. Chemistry generates new mathematical problems
in graph theory. Meanwhile, graph theory is handy for enumerating, classifying, en-
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visioning chemical structures and storing chemical information, despite that chemical
structures do not meet strict definition of mathematical graphs [5]. The following is an
illustration of these two aspects using polyenes as an example.

2. Acyclic polyenes

Acyclic polyenes of the formula CnHn+2 are tree-shaped chemical structures with
three links or less evenly spaced at triangular corners of each node. Nodes short of three
links are padded with hydrogens. All nodes are equivalent. Quantum mechanically (in
Hückel sense) all links are equivalent but classically they are differentiated into single
and double bonds. This model accounts for isomerism of polyenes but fails to differen-
tiate isomers by radicality. To remedy, we shall revert to classical picture of chemical
bonds. With the condition that double bonds are conjugated, a polyene strives for sta-
bility by acquiring a maximal number of double bonds. If double bonds are less than
half the number of carbons, the structure is radical and often called polyenoid. Mul-
tiple configurations with the same number of conjugated double bonds corresponding
to one polyenoid species are possible; they are resonant structures. An example is the
three structures of trimethylenemethane diradical, C4H6. We follow quantum-theoretical
sense not to differentiate these configurations but adopt classical notation to sort isomers
by radicality.

Acyclic polyenes without being sorted by radicality are treated in Cyvin et al. [6],
where complete mathematical expression of generating function is given. Yeh [7] ratio-
nalizes this result by using Polya’s scheme, namely, by building the cycle index with the
symmetry of trees embedded in 2-D hexagonal lattice. Bytautas and Klein [8] further
treat radicality as a parameter and have obtained an algorithm for isomer enumeration.

Radicality reflects chemical reactivity. Precisely, radicality is the number of nodes
not linked to a double bond. These nodes are can always be set at tips of a tree struc-
ture. Discrepancy between the maximum possible and the actual number of double
bonds amounts to radicality. Suppose that d is the number of double bonds and n is
total number of carbon atoms in polyene, then radicality is r = n − 2d. Here are two
interesting points about the radicality of acyclic polyenes. First, radicality concurs with
the resonance of structures; even though they oppose each other in affecting energy. For
example, the diradical trimethylenemethane has three resonant structures. That reso-
nance comes along with radicality in acyclic polyenes does not imply a logical induction
between the two concepts, but both result from the conjugation of double bonds. The
energy raised by radicality by far exceeds the energy lowered by resonance, hence net
energy is raised. Second, radicality is upper bounded by the number of branching in a
polyene. Linear polyenes [9] can have at most a radicality of one: r = 0 for even n and 1
for odd n. Higher radicality exists only in branched structures. Three types of structural
units are associated with radicality, all of which contain tip(s) not linked to a double
bond, are shown in figure 1. One is the allyl fragment CH2–CH=CH–; the other two
are fragments of Y-shaped trimethylenemethanyl radical C4H5–. Molecular properties
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Figure 1. Three basic units associated with radicality. Star designates the root.

of polyenes [10–12] and their derivatives [13,14] have been subject to computations and
experiments because many chemical reactions involve free radicals.

The same principle should apply in sorting and enumerating polyenes whether rad-
icality is included as a factor or not. Non-radical and radical acyclic polyenes of all cat-
egories are constructed through the generating function of monosubstituted derivatives.
The term ‘monosubstituted derivative’ is generic and includes free radicals formed with
a hydrogen stripped off (not to be confused with radical parent species). For geometric
isomers of polyenes indistinctly of their radicality, the generating function obeys

A(x) = 1+ x[A(x)]2
.

In this paper, we modify the above equation to accommodate radicality. Through the
use of dummy variables x and y, monosubstituted polyenes of size n and radicality r
are grouped together, by form of xnyr in the generating function A(x, y). Expansion
coefficient of A(x, y) in the term xnyr is the isomer count of polyenes. Specifically,
at y = 0, A(x, y) is a set of terms representing polyenes of zero radicality; at y = 1,
those of all radicalities. Through formulating recurrence relations, we shall construct
polyenoid structures with distinct radicalities while disregarding difference between res-
onant structures.

We sort acyclic polyenes through graph-theoretical techniques and hope to see
some trends of these species. In section 3, how to generate geometric isomers of mono-
substituted polyenes is presented as a mathematical problem. In sections 4 and 5, we
seek solution in parallel with the scheme outlined in [7] as follows.

1. Sort monosubstituted polyenes into singly and doubly bonded ones.

2. Build monosubstituted polyenes through recurrence relations.

3. Build single-node labeled polyenes, single-link labeled polyenes and polyenes
with centered link.

4. Based on the dissimilarity characteristic theorem, build and enumerate parent
species.

In section 6, constitutional isomers are treated similarly.

3. Nature of problem: generating function

Our theme topic is a mathematical problem per se. Assume that a function
A(x, y) = ∑

bnrx
nyr with positive integer expansion coefficients bnr is met with two
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conditions. On the one hand when y = 0, A(x, y) generates all non-radical polyenes.
Each double bond is a building block on which three distinct links may grow from a
root: geminal, cis and trans. In the Polya formulation [5], the function generates itself
through the cycle index as

A(x, 0) = 1+ 2x2[A(x, 0)
]3
,

where the exponent 3 represents the three distinct links of each building block and the
multiplication factor 2 depicts the two geometric isomers that may grow from each link.
On the other hand with all radicalities (y = 1), there is no distinction between single
and double bonds. The function becomes

A(x, 1) = 1+ x[A(x, 1)
]2
.

Our problem is to find A(x, y). Some remarks about the generating function A(x, y) are
worth mentioning before pursuing solution.

First, this generating function is determined by the growth pattern of trees embed-
ded in hexagonal lattice. Recurrence relations of this function are derived in compliance
with the symmetry in 2-D space. Monosubstituted polyenes are generated while embed-
ded in 2-D space. Analogous to those in 3-D space, chiral structures in 2-D space (not
superimposable with the image in 1-D mirror) form enantiomeric pairs. These chiral
pairs become indistinguishable in 3-D space and hence are overly counted. Redundant
counts of both monosubstituted and parent polyenes caused by the expansion of space
dimension need to be corrected.

Second, the two conditions posted for A(x, y) are themselves recurrence relations,
which by default are solvable by successive approximation. Starting from A(x, 0) = 1,
iteration gives A(x, 0) = 1+ 2x2 + 12x4 + 96x6 + 880x8 + 8736x10 + · · · . Similarly,
A(x, 1) = 1 + x + 2x2 + 5x3 + 14x4 + 42x5 + 132x6 + 429x7 + 1430x8 + · · · . Not
only coefficients of A(x, 0) or A(x, 1) are counts of monosubstituted polyenes sorted
by size but each term symbolically represents a chemical structure. In other words, the
iteration is a growth process for tree-shaped chemical structures. Generating function
could generate distinct symbols to identify each chemical structure, a subject we shall
not elaborate here. Note that A(x, y) has the same number of terms as A(x, 1) and splits
acyclic polyenes further through radicality.

Third, passage from A(x, 0) to A(x, 1) represents the solution A(x, y). Although
A(x, 1) is a bigger set (has more terms) than A(x, 0), simply by adding extra term in-
volving y at right-hand side of the recurrence relation of A(x, 0), A = 1+ 2x2A3, does
not giveA(x, y) but invariably yields something bigger. How a cubic equation ofA(x, 0)
turns into quadratic equation of A(x, 1) is intriguing.

Fourth, symmetry of a species is not diecasted. Different symmetries may apply to
a species in accordance with categorization. In general, the symmetry used in geometric
isomerism of acyclic polyenes, C3, is less than that in constitutional isomerism, C3×C2.

Fifth, the terms chirality and enantiomericity refer to those in 2-D space. All poly-
enes are achiral in 3-D space.
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4. Solution: geometric isomers of monosubstituted acyclic polyenes

Bytautas and Klein [8] have studied the problem and found recurrence relations
in algorithmic form. Initiated by these authors’ work, we seek close-form formulation
of their solution. We follow their notations (S and D) but drop the parameter of the
generation number g, a simplification that renders closeness of formulation.

We start by sorting monosubstituted polyenes. A polyene (except for the first mem-
ber, methyl radical) has several distinct substitution sites, each yielding a monosubsti-
tuted derivative. Once sorted, monosubstituted derivatives are in turn used to determine
parent polyene. They are sorted by characterizing substitution sites of polyenes. There
are two kinds of substitution sites. In the first kind, substitution lowers radicality and the
substituent will be called doubly bonded because a double bond can be unambiguously
assigned to the site. The other kind will be called singly bonded although the bond or-
der is not decisively single but always given some double bond character by resonance
structures. This dichotomy is evident by screening through structures of monosubsti-
tuted polyenes (see figure 3). The same rule as applied to parent species is used to
decide the bond order at substitution site: double bonds are conjugated and their number
is maximized. Consequently, configuration of polyene is irreversibly changed in doubly
bonded substitution; either the places of single and double bonds are interchanged or
the bonds of ambiguous bond order are now decisively assigned. This is due to lowered
radicality. In singly bonded substitution, configuration stays the same.

With above understanding, we sort monosubstituted polyenes A(x, y) into two
parts; those with singly bonded substitution site are grouped in S(x, y) and others in
D(x, y). Naturally we assume that monosubstituted polyenes are expressed in the same
format xnyr as parent species. This makes A(x, y) a superset of the generating function
for parent polyenes. Consequently, terms from both S(x, y) and D(x, y) may converge
to the same parent species. Based on this assumption, D(x, y) is necessarily accompa-
nied by a factor y, which reflects the radicality lost by the parent species. Thus,

A(x, y) = S(x, y) + yD(x, y).
The functions S(x, y) and D(x, y) are used in two places, first in this section for

self-growth, namely, to build the recurrence relation, and then in the next section for
building single-node labeled, single-link labeled, and parent polyenes.

That each substitution site can be characterized as singly or doubly bonded is not
only the key point in sorting polyenes but also has implications in chemical reactivity
of radical polyenes. Doubly bonded substitution lowers radicality and hence is energet-
ically favorable. For example, allyl radical C3H5, has three sites: doubly bonded sites at
both ends and a singly bonded site at middle. See figure 3. A carbene group CH2: would
favor attaching to one end of allyl radical but not the center. Substitution groups of dou-
bly bonding tendency less than carbene, such as halogens, nonetheless would follow the
same regioselectivity.

How to tackle the problem posted in section 3? The idea is to draw an analogy
from the special case y = 1. We start from the recurrence relation of A(x, 1), rewrite it
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Figure 2. Pictorial representation of the recurrence relation for the functions S(x, y) and D(x, y). Star
designates the root.

as S(x, 1) + D(x, 1) = 1 + x[S(x, 1) + D(x, 1)]2, and then split into two parts, each
of which is generalized in seeking recurrence relations of S(x, y) and D(x, y), with the
notion that result should fit the special case A(x, 0) = S(x, 0) = 1 + 2x2[S(x, 0)]3.
The result is a pair of coupled equations for functions S(x, y) and D(x, y). Their con-
struction is rationalized as follows. We need only concern the growth at the root. A root
is a node that is singled out by bonding to substituent or by labeling. Out of the two
branches that can grow, each represented by S(x, y) or D(x, y), form three possible
patterns: S(x, y)D(x, y), [D(x, y)]2 , and [S(x, y)]2. The first two patterns lead to the
species with singly bonded substituent. The third leads to those with doubly bonded
substituent. Pictorial representation of these recurrence relations is shown in figure 2.
In the first pattern, the interchange of S(x, y) and D(x, y) yields enantiomeric isomers
in 2-D space and doubles the count, hence a factor 2 is affixed. In the second, of which
both branches are made of D(x, y), yields a structure with two double bonds cramming
the root node. To remedy the situation, we alternate sequence at one branch (double
bonds replaced by single bonds and vice versa). Re-sequencing causes a double bond to
disappear and raises radicality, hence a factor y is affixed. Species with singly bonded
substituent are determined by the two patterns together as

S(x, y) = 1+ 2xS(x, y)D(x, y) + xy[D(x, y)]2
.

The third pattern is responsible for species with doubly bonded substituent,

D(x, y) = x[S(x, y)]2
.

In all but the null term, 1, a factor x is added to account for the root.
The above two coupled equations can be solved analytically or through iteration

to obtain A(x, y). When combined, the two equations yield the quartic equation for
S(x, y), S = 1 + 2x2S3 + x3yS4, which can be solved analytically. Final solution is
given by A(x, y) = S + yxS2. 3-dimensional plot of A(x, y) could show a path of how
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the cubic curve A(x, 0) evolves into the quadratic curve A(x, 1).1 On the other hand,
iterative approach starting from S(x, y) = 1 and D(x, y) = 0 gives explicit expression
as

S(x, y)= 1+ 2x2 + yx3 + 12x4 + 14yx5 + (96+ 4y2)x6 + 180yx7

+ (880 + 110y2
)
x8 + (2288y + 22y3

)
x9 + · · · ,

D(x, y)= x + 4x3 + 2yx4 + 28x5 + 32yx6 + (240 + 9y2
)
x7 + 440yx8

+ (2288 + 264y2)x9 + · · · .
Members of S(x, y) andD(x, y) are shown concisively in figure 3, where all 3-D mono-
substituted species are shown; only one of each 2-D enantiomeric pair is shown. Obvi-
ously, a structure is in S(x, y) if the substituent * is connected by a single bond or
D(x, y) if doubly bonded.

Enantiomeric isomer becomes identical in 3-D space. Each enantiomeric pair has
two counts in A(x, y) and one needs to be dropped. The net count A3d(x, y) is an
average between the raw count A(x, y) and the count of achiral species As(x, y) in 2-D
space. Achiral species are those in A(x, y) that have two enantiomeric moieties. They
are counted by As(x, y) = 1+ yx[S(x2, y2)+D(x2, y2)], with the same rationalization
as described in figure 2. Monosubstituted polyenes in 3-D space are generated by the
function

A3d(x, y)= A(x, y) + As(x, y)

2
= 1+ yx + x2 + 3yx3 + (6+ y2

)
x4 + 22yx5 + (48+ 18y2

)
x6

+ (212y + 5y3)x7 + (440 + 275y2)x8 + (2295y + 143y3)x9 + · · · .
The first few structures of A3d(x, y) are shown in figure 3. For pentadienyl derivatives,
the term 22yx5 gives 7 structures with singly bonded root and 15 with doubly bonded
root.

5. Parent species

In order to build parent species, we need use monosubstituted polyenes and build
three more homologous series: single-node labeled species, single-link labeled species,
and species with centered link. Labeling is symbolic but could be made real by radioac-
tive atoms. The essential idea is to work backward: first find derivatives and labeled
species and then set them free from substituents and labels. To do this, we use dissimi-
larity characteristic theorem [15,16], which is briefly delineated in the following. Each
polyene contains a number of distinct nodes. The number is total number of nodes if
there is no similar nodes (no symmetry in a structure) and less otherwise. It is also
the number of single-node labeled species derived from a parent polyene. Analogously,

1 There is no unique way of turning A(x, 0) into A(x, 1). Any combination of A(x, y) = S(x, y) +
ymD(x, y) with m > 0 gives a possible path.
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Figure 3. A3d(x, y): geometric isomers of monosubstituted polyenes CnHn+1X. Star designates the sub-
stituent. Only one resonant structure for each isomer is shown. Structures labeled with A at the root are
2-D achiral; the rest are chiral. This figure can also be used to visualize S(x, y) andD(x, y) if enantiomers
of all 2-D chiral structures are added. Structures with singly and doubly bonded substituent are designated

as members of S(x, y) and D(x, y), respectively.
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each polyene derives a number of single-link labeled species. Since for each acyclic
polyene nodes exceed links by one, single-node labeled species outnumber single-link
labeled species by one. In other words, each parent polyene as one count is the differ-
ence between total single-node labeled species and single-link species. Summing over
single-node labeled species and single-link labeled species separately and finding the
difference, we should reach the number of parent species. Expression is shown below.
This is why we need to build the first two said series. If some species have a symmet-
ric, centered link, the set of single-link labeled species is over-counted and should be
cancelled against the species with centered link, hence the third series.

Each single-node labeled polyene is made of a labeled node with three branches.
We denote P(x, y) as enumerating function of these polyenes. Each of the three
branches is represented by A(x, y). The construction of P(x, y) is analogous to that
of monosubstituted polyenes, only now each species has three growing branches, in-
stead of two and a substituent. Generating functions of three branches are multiplied,
not straightforwardly but dictated by the symmetry of a node in hexagonal lattice, in
the form of Pólya’s cycle index as P(x, y) = (x/3){[A(x, y)]3 + 2A(x3, y3)}. Besides,
when S(x, y) and D(x, y) are fed into the cycle index, it is not a direct substitution with
A(x, y) = S(x, y)+yD(x, y), but each term should be modified to comply with radical-
ity. [A(x, y)]3 produces four terms. Only the term 3[S(x, y)]2D(x, y), corresponding to
two single bonds and a double bond, does not upset existing radicality; other terms have
to be adjusted. Again, classical picture of chemical bonds is used. The term [S(x, y)]3
corresponds to a node with three single bonds which are readjusted by the conjugation of
double bonds and give a new radicality, hence a y is affixed. A node with a single bond
and two double bonds belongs to the term 3S(x, y)[D(x, y)]2 , also affixed with y (sec-
tion 4). The term [D(x, y)]3 corresponds to a node of three double bonds that needs to
be adjusted twice, resulting in an attachment of y2. S(x3, y3) and D(x3, y3) are treated
the same way as [S(x, y)]3 and [D(x, y)]3. Final form of P(x, y) for geometric isomers
of node-labeled polyenes becomes

P(x, y)= x
3

{
y
[
S(x, y)

]3 + 3
[
S(x, y)

]2
D(x, y) + 3yS(x, y)

[
D(x, y)

]2

+ y2[D(x, y)
]3 + 2

[
yS
(
x3, y3)+ y2D

(
x3, y3)]}.

A single-link labeled polyene is synthesized by eliminating substituents from two
monosubstituted species. In place of two substituents, a link is formed. Enumerating
function is

Q(x, y) = 1

2

{[A(x, y) − 1]2 + A(x2, y2)− 1
}
,

where the null tree, 1, is rejected because linking to a null branch does not give new
species. When two monosubstituted species are combined, three situations arise: two
singly bonded roots are linked to each other, two doubly bonded roots are linked to
each other, and a singly bonded root is linked to a doubly bonded one. In the first
two combinations, there are no radicality changes. In the last situation, a reconcilia-
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Figure 4. Three types of 2-D achiral polyenes.

tion of bond character at the link gives an extra radicality factor y. The term becomes
y[S(x, y) − 1]D(x, y). The net result is

Q(x, y)= 1

2

{[
S(x, y) − 1

]2 + 2y
[
S(x, y) − 1

]
D(x, y)

+ [
D(x, y)

]2 + S(x2, y2
)− 1+D(x2, y2

)}
.

Species with centered link, R(x, y), are special cases of Q(x, y) where two
branches linked at the center are enantiomeric to each other:

R(x, y) = S(x2, y2)− 1+D(x2, y2).

According to the dissimilarity characteristic theorem, parent species are counted
by

F(x, y) = P(x, y) −Q(x, y) + R(x, y).
However, these parent species are counted in 2-D space. When extended to 3-D space,
structures merge and redundancy occurs. Redundancy is removed by deleting half of
chiral structures from total counts. Or equivalently, we add 2-D achiral structures, as
counted by F3s(x, y), to total count and divide the sum by two. Net count in 3-D space
is

F3d(x, y) = 1

2

[
F(x, y) + F3s(x, y)

]
.

It is more cumbersome to figure out 2-D achiral structures in parent species than in
monosubstituted species. Achiral polyenes are divided into three categories, A1, A2, and
B, as shown in figure 4. The first two categories are more tedious. First, we consider the
situation y = 1 (no breakdown by radicality). The A1 and A2 categories combined are
counted by the function A(x2, 1)− 1. This result is explained as follows. The structures
that are common to both A1 and A2 categories have the symmetries of both categories
and belong to D2h group in 3-D space. Because their twin center nodes are connected
to either four equivalent achiral side groups or two pairs of enantiomeric chiral side
groups, these structures are counted by x2A(x4, 1). On the other hand, each category is
counted by (1/2)x2{[A(x2, 1)]2+A(x4, 1)], for the same reason that single-link labeled
species as represented by Q(x, 1) are counted by (1/2){[A(x, 1)− 1]2 +A(x2, 1)− 1}.
Only now the size of each achiral structure (the exponent of x) reflects not two polyenyl
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groups but four divided into two pairs. The x2 factor corresponds to the two center
nodes. The net count of 2-D achiral polyenes in A1 and A2 categories is obtained by
subtracting common members from the sum of A1 and A2, resulting in x2[A(x2, 1)]2 =
A(x2, 1)− 1.

Next, we extend the expression to include the radicality variable y. The two cat-
egories A1 and A2 combined would have been counted by S(x2, y2) − 1 + D(x2, y2),
however, radicality complicates outcome. S(x2, y2) and D(x2, y2) represent 2-D achi-
ral polyenes with single bond and double bond at middle link, respectively. Note that
for radical species the single bond at middle link has partial double bond character.
For D(x2, y2), there is no complication. S(x2, y2) is split according to the relation
S(x, y) = 1 + 2xS(x, y)D(x, y) + yx[D(x, y)]2, which is modified by radicality and
size-doubling as

S
(
x2, y2) ⇒ 1+ (1+ y2)x2S

(
x2, y2)D

(
x2, y2)+ y2x2[D

(
x2, y2)]2.

That is, achiral species with single bond as center link may have two kinds of compo-
sition, consisting of either a pair of singly bonded branch plus a pair of doubly bonded
branch as represented by x2S(x2, y2)D(x2, y2) or two pairs of doubly bonded branches
as represented by x2[D(x2, y2)]2. In the x2S(x2, y2)D(x2, y2) term, the moiety R in A1
structures (figure 4) is branched into one singly bonded root as represented by S(x, y)
and one doubly bonded root as represented byD(x, y). Note that every achiral structure
in A1 category has a corresponding structure in A2. As A1 is mapped into A2, two dou-
ble bonds are lost upon the readjustment to conjugation and radicality is raised by two,
hence a factor y2 is attached. This is why the pre-factor 2 of x2S(x2, y2)D(x2, y2) turns
into 1+ y2. The appearance of the pre-factor y2 in the x2[D(x2, y2)]2 term is explained
similarly. See figure 5.

Each structure in category B bears a centered node with two enantiomeric branches
and belongs to either xS(x2, y2) or xD(x2, y2), both readjusted to a new radicality
formed at center node. Hence category B is counted by xy[S(x2, y2)+D(x2, y2)].

Summarily, 2-D achiral polyenes are counted by

F3s(x, y)=
(
1+ y2

)
x2S

(
x2, y2

)
D
(
x2, y2

)+ y2x2
[
D
(
x2, y2

)]2

+D(x2, y2
)+ xy[S(x2, y2

)+D(x2, y2
)]
.

Figure 5 gives graphical interpretation of each term in F3s(x, y).
The final count of polyenes is explicitly expressed as

F3d(x, y)= yx + x2 + yx3 + (2+ y2)x4 + 4yx5 + (9+ 3y2)x6

+ (26y + y3
)
x7 + (50+ 32y2

)
x8 + (214y + 14y3

)
x9 + · · · .

Each term xnyr corresponds to a structure that is converged from a mutually exclusive
set of images shown in figure 3. In other words, F3d(x, y) is a subset of A(x, y), as
rooted graphs must be a superset of (many-to-one mapping to) free graphs.
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Figure 5. F3s(x, y): terms representing 2-D achiral polyenes. Only one resonant structure for each kind is
shown.

6. Constitutional isomers

Constitutional isomers are in a one-to-many correspondence with geometric iso-
mers. For acyclic polyenes, all geometric isomers that can be superimposed into one
another through rotation around single or double bonds merge to a constitutional isomer.
Now that all structures are achiral in 2-D sense, the treatment is simpler. No redundancy
occurs when constitutional structures are extended to 3-D space. Derivations are parallel
to those in geometric isomerism and briefly stated as follows. Monosubstituted species
are generated by the function a(x, y). Each species with size n and radicality r is a term
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xnyr in a(x, y). Again, we rely on situations y = 0 (with no radicality) and y = 1
(with all radicalities but no discrimination among them) to build up overall situation.
Recurrence relations can readily be derived from the Cayley–Polya scheme [1,5] as

a(x, 0)= 1+ x
2

2
a(x, 0)

{[
a(x, 0)

]2 + a(x2, 0
)}
,

a(x, 1)= 1+ x
2

{[
a(x, 1)

]2 + a(x2, 1
)}
.

The latter equation is listed as equation (4) in [7], where f2(x) = a(x, 1) − 1 is used.
Iteration of these recurrence relations gives a(x, 0) = 1 + x2 + 2x4 + 6x6 + 19x8 +
67x10 + · · · and a(x, 1) = 1 + x + x2 + 2x3 + 3x4 + 6x5 + 11x6 + 23x7 + 46x8 +
98x9+· · · . The coefficient of each term is the number of isomers with the size expressed
by the exponent. Seeking a function a(x, y) that incorporates both recurrence relations
of a(x, 0) and a(x, 1), we separate it into two components, s(x, y) and d(x, y), each
representing monosubstituted polyenes with singly and doubly bonded root, respectively.
The same strategy as in geometric isomerism is used. Upon substituting a(x, 1) =
s(x, 1)+ d(x, 1), the recurrence relation of a(x, 1) is split into two parts, each of which
is extrapolated to restore the discriminating factor y. Results are

s(x, y)= 1+ xs(x, y)d(x, y) + 1

2
xy
{[
d(x, y)

]2 + d(x2, y2
)}
,

d(x, y)= 1

2
x
{[
s(x, y)

]2 + s(x2, y2
)}
.

As two branches of doubly bonded root grow from a singly bonded root, radicality raises
by one (section 4). Therefore, the third term in the recurrence relation of s(x, y) is af-
fixed with a factor y. Unlike in geometric isomerism, the generating function a(x, y)
of constitutional isomers cannot be expressed in close algebraic form because the recur-
rence relations contain functionals. The recurrence relations must be solved by iteration,
which gives

a(x, y)= 1+ yx + x2 + 2yx3 + (2+ y2
)
x4 + 6yx5 + (6+ 5y2

)
x6

+ (21y + 2y3
)
x7 + (19+ 27y2

)
x8 + (82y + 16y3

)
x9 + · · · .

Through dissimilarity characteristic theorem, parent species are expressed in terms
of the three homologous series – single-node labeled species p(x, y), single-link labeled
species q(x, y) and species with centered link r(x, y) – as f (x, y) = p(x, y)−q(x, y)+
r(x, y). p(x, y), q(x, y) and r(x, y) are, in turn, expressed in terms of monosubstituted
species a(x, y). Among the three series, only single-node labeled species p(x, y) is
formulated differently from the counterpart in geometric isomerism, whereas q(x, y) and
r(x, y) are exact copies of their counterparts. For constitutional isomers, the symmetry
at each node is C3×C2. Hence, the growth of single-node labeled polyenes is formulated
in terms of cycle index as

p(x, 1) = x

6

{[
a(x, 1)

]3 + 3a(x, 1)a
(
x2, 1

) + 2a
(
x3, 1

)}
.
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With radicality taken into account (section 5), generating function of single-node labeled
polyenes becomes:

p(x, y)= x
6

{
y
[
s(x, y)

]3 + 3
[
s(x, y)

]2
d(x, y)

+ 3ys(x, y)
[
d(x, y)

]2 + y2[d(x, y)
]3 + 3ys(x, y)s

(
x2, y2)

+ 3ys(x, y)d
(
x2, y2)+ 3s

(
x2, y2)d(x, y)

+ 3y2d(x, y)d
(
x2, y2)+ 2

[
ys
(
x3, y3)+ y2d

(
x3, y3)]}.

Results are summarized and compared with those of geometric isomers in table 1.
Final counts of constitutional isomers are given in the explicit expression,

f (x, y)= yx + x2 + yx3 + (1+ y2
)
x4 + 2yx5 + (2+ 2y2

)
x6 + (5y + y3

)
x7

+ (4+ 7y2
)
x8 + (14y + 4y3

)
x9 + · · · .

7. Discussion and conclusion

Graph theory complements quantum mechanics for exploring chemical structures.
This work presents close-form formulation and analytical solution of an enumeration
problem that previously has been solved by algorithmic method. Through close-form
formulation, we are able to interpret the growth pattern of acyclic polyenes in terms of
tree structures embedded in hexagonal lattice. In addition, how a function A(x, 0) of
cubic equation evolves into A(x, 1) of quadratic equation through continuous function
A(x, y) as a mathematical curiosity is rationalized. Function for generating polyenoids,
A(x, y), consists of two parts coupling to each other. Neither part alone, S(x, y) or
D(x, y), generates the whole set of polyenoid structures. However, non-radical polyenes
are generated by S(x, 0) alone. The key to sort polyenes is to split A(x, y) into parts
based on two kinds of substitution sites. Sites of doubly bonded root counted byD(x, y)
are more stable than those of singly bonded root counted by S(x, y). Each part has its
characteristic growth pattern that dictates the recurrence relation. Growth patterns from
these two kinds of root also determine node- and link-labeled derivatives, which are
needed for generating parent species.

Constitutional isomerism of polyenes is expressed similarly in close form, but the
equations thus derived cannot be solved analytically.

A similar problem is to count staggered conformers of alkanes. Structures are built
from σ bonds and counted in 3-D space, instead of π bonds and 2-D space. This problem
is less involved than ours in two aspects. One, the placement of alternating double bonds
is not an issue and there is no radicality to muddle. Two, chirality stays in 3-D space
and hence would not be the source of miscount. This problem is posed by Cyvin [17]
and solved analytically by Wang, Cao and Li [18]. Their solution also uses coupled
generating functions but can be simplified to a single function, yielding the recurrence
relation b = 1+ xb3.
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